Homework \#12 Math 518

Due in class Wednesday, November 16, 2011

1. Let M be an open subset of \mathbb{R}^{3}. In \mathbb{R}^{3}, the standard inner product (\cdot, \cdot) defines an isomorphism $\mathbb{R}^{3} \rightarrow\left(\mathbb{R}^{3}\right)^{*}, v \mapsto(v, \cdot)$, which in turn induces an isomorphism of spaces of sections

$$
A: \Gamma(T M) \rightarrow \Omega^{1}(M), \quad A(X)=(X, \cdot)
$$

The standard volume form $\mu=d x_{1} \wedge d x_{2} \wedge d x_{3}$ defines an isomorphism $\mathbb{R}^{3} \rightarrow \Lambda^{2}\left(\left(\mathbb{R}^{3}\right)^{*}\right)$ by $v \mapsto \iota(v) \mu$, which also induces an isomorphism

$$
B: \Gamma(T M) \mapsto \Omega^{2}(M) \quad B(X)=\iota(X) \mu
$$

Finally, the map

$$
C: C^{\infty}(M) \rightarrow \Omega^{3}(M) \quad C(f)=f \mu
$$

is also an isomorphism. (Check these facts!)
Show that the standard vector calculus notions of div, grad, and curl can be defined as

1. $\operatorname{grad}(f)=A^{-1}(d f)$ for any smooth function f on M.
2. $\operatorname{curl}(X)=B^{-1}(d(A(X)))$ for any vector field X on M.
3. $\operatorname{div}(X)=C^{-1}(d(B(X)))$ for any vector field X on M.

In other words prove that the diagram

commutes.
2. Prove that for any manifold M, a 1-form α on M and any vector fields X, Y on M,

$$
L_{X}(\imath(Y) \alpha)=\imath\left(L_{X} Y\right) \alpha+\imath(Y) L_{X} \alpha
$$

3 Let V be a real vector space of dimension $n, v_{1}, \ldots, v_{k} \in V$ a finite collection of vectors. Prove:

$$
v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k} \neq 0
$$

if and only if the set $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent.

4 Prove that for any k-form α and any ℓ-form β on a manifold M, we have

$$
\alpha \wedge \beta=(-1)^{|\alpha||\beta|} \beta \wedge \alpha
$$

